Sustainable Biochar-amended Soil Cover Systems for Landfill Gas Mitigation

Krishna R. Reddy, PhD, PE, BCEE, DGE, FASCE, ENV SP
Professor of Civil & Environmental Engineering
Director, Sustainable Engineering Research Lab
Geotechnical & Geoenvironmental Engineering Lab
University of Illinois, Chicago

Geological, Mining, and Geotechnical Engineering 2nd Technical Conference and Alumni Reunion, September 13-15, 2017
Sustainable Engineering Research Laboratory (SERL)
Geotechnical and Geoenvironmental Engineering Laboratory (GAGEL)

Directed by Prof. Krishna R. Reddy, University of Illinois at Chicago, kreddy@uic.edu

Environmental Remediation of Soils, Sediments, Groundwater and Stormwater
- In-situ remediation technologies
- Mixed and emerging contaminants
- Heterogeneous and low permeability subsurface environments
- New development or optimization of technologies:
 - Electrokinetic/electrochemical remediation
 - Air sparging/bio-sparging
 - Chemical oxidation
 - Chemical reduction by nanoparticles
 - Bioremediation/phytoremediation
 - Stabilization
 - Active and passive containment
 - Integrated technologies
- Green, sustainable and resilient remediation

Life Cycle Assessment and Sustainable Engineering
- LCA, SLCA, Rating systems
- Sustainable civil engineering materials
 - Scrap tires versus sand as drainage material in landfill covers and liners
 - Biochar versus compost as landfill cover material
- Sustainable civil infrastructure
 - Foundations (e.g., piles versus caissons)
 - Earth-retaining systems (e.g., Reinforced cantilever retaining wall versus mechanically stabilized wall)
 - Ground improvement (e.g., lime treatment versus organic amendment)
- Sustainable waste management
 - Landfilling versus incineration
- Sustainable environmental remediation
 - Quantitative assessment of sustainability metrics
 - Social sustainability evaluation matrix (SSEM)

Waste Management and Treatment/Landfill Engineering
- Beneficial use of waste and recycled materials
- Anaerobic digestion/composting
- Mechanical stability and chemical containment of landfills (coupled processes/modeling)
- Sustainable landfill liner and cover systems
- Biocovers
- Bioreactor landfills

Geotechnical Engineering
- Site investigations
- Structural foundations
- Earth-retaining structures
- Dams and levees
- Ground improvement techniques
- Geomechanics
- Geotechnical earthquake engineering

http://geotech.lab.uic.edu
Methane Emission Problem

Landfills: 18%- 3rd largest source of CH₄ emissions in the US

Hazards of CH₄:
- Explosive hazard
- Greenhouse gas
- Asphyxiant

Controls on CH₄ emission
- Soil Cover: Thickness/Presence
- Oxidation by methane oxidizing bacteria
- LFG recovery

*Not Adequate to control CH₄???

Microbial Methane Oxidation
\[CH₄ + 2O₂ \rightarrow CO₂ + 2H₂O + \text{heat} \]

‘Fugitive emissions’

Landfill gas recovery
Biocovers

- Add organic-rich amendment (e.g., compost) to soil to promote nutrient and water retention and increase porosity.

- Enhances growth/activity of methane-oxidizing bacteria and methane oxidation within the cover.

- Biocovers, biowindow & biofilter designs.

Microbial Methane Oxidation

\[CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O + \text{heat} \]

Source: Scheutz et al. (2011)
Current Biocover Technologies

• Biocovers investigated in prior studies have used a variety of organic materials:

<table>
<thead>
<tr>
<th>Material</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compost</td>
<td>Peat Moss</td>
</tr>
<tr>
<td>Sewage Sludge</td>
<td>Yard waste</td>
</tr>
<tr>
<td>Mulch</td>
<td>Corn Stover</td>
</tr>
<tr>
<td>Activated Carbon</td>
<td>Wheat straw</td>
</tr>
<tr>
<td>Wood/bark chips</td>
<td>Earthworm cast</td>
</tr>
</tbody>
</table>

Need a superior material to sustain CH$_4$ oxidation for longer periods

• Oxidation efficiencies limited by several factors:

- Material degradation and subsequent pore clogging
 - Formation of exo-polysaccharides (EPS) that reduces gas transport and cover aeration
- CH$_4$ generation (rather than oxidation) in ‘immature’ or water-logged compost
- Inhibition of methanotrophic activity due to NH$_4^+$ or competition with heterotrophic bacteria
Use of Biochar as Amendment

What is biochar?
Solid product of biomass pyrolysis or gasification in anoxic or low-O₂ environments

- Agricultural waste (straw, corn husks)
- Wastewood
- Any organic waste

Biomass → **Pyrolysis or Gasification Reactor** → **Waste Heat Recovery** → **Biochar** → **Syn-gas & Syn-fuel**

How can it promote methane oxidation?

- High internal porosity and surface area
- Can be furnished with nutrients to support microbial activity
- More stable source of organic carbon
- Related studies indicate biochar can adsorb CH₄ to its surface
- High water-holding capacity
Batch Experiments

Column Experiments

Significant amount of CH₄ oxidation observed for biochar amended landfill cover soil; Only one biochar type was investigated
Comprehensive Research Goals

1. Assess the impacts of biochar-amendments to landfill cover soil on microbial methane oxidation rates.

2. Identify dominant factors affecting methanotrophic growth and activity in biochar-amended soil covers over long timescales to obtain field-relevant laboratory data.

3. Assess performance of biochar-based covers under field conditions.

4. Develop design guidelines for the construction of biochar-based landfill covers for methane mitigation.

CMMI#1200799 Sustainable Biocover System for Methane Oxidation in Landfills (PI: K. Reddy)
Biochars Tested

- BS
- CE-WP1
- Ash retained
- CK
- CE-WP2
- Ash Removed
- AW
- CE-AWP
- Aged for >2 years
- GAC
Biochar Selection

• CE-WP biochars selected for use based on:

 ➢ High fixed C content (35%) and surface porosity (41.4%)

 ➢ Low PAH and trace metal contents

 ➢ Low dust generation (pelleted)

 ➢ High CH$_4$ adsorption capacity

CE-WP Biochar (ash removed) – derived from pinewood, produced via gasification at ~ 520°C
Column Testing

<table>
<thead>
<tr>
<th>Soil Control</th>
<th>2% biochar-soil layer, 20-40 cm bgs</th>
<th>10% biochar-soil layer, 20-40 cm bgs</th>
<th>10% biochar-amended soil</th>
</tr>
</thead>
</table>

[Image of the experiment setup with labeled columns for different biochar treatments.]
Outlet CH₄ Fluxes Over Time

<table>
<thead>
<tr>
<th>Test Stage</th>
<th>Duration (days)</th>
<th>Inlet Gas</th>
<th>Inlet Q (ml/min)</th>
<th>CH₄ Influx (g CH₄ m⁻² d⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Pre-incubation</td>
<td>50</td>
<td>1% CH₄, 99% N₂</td>
<td>2.5</td>
<td>0.95</td>
</tr>
<tr>
<td>II Acclimation Stage 1</td>
<td>30</td>
<td>60% CH₄, 40% CO₂</td>
<td>1.8</td>
<td>66.8</td>
</tr>
<tr>
<td>III Acclimation Stage 2</td>
<td>43</td>
<td></td>
<td>9.2</td>
<td>195.3</td>
</tr>
<tr>
<td>IV Moderate Flux, Steady-State</td>
<td>30</td>
<td></td>
<td>7.2</td>
<td>152.1</td>
</tr>
<tr>
<td>V High Flux, Steady State</td>
<td>112</td>
<td></td>
<td>8.8</td>
<td>185.2</td>
</tr>
<tr>
<td>VI Diffusion-dominant steady state</td>
<td>145</td>
<td></td>
<td>4.7</td>
<td>101.9</td>
</tr>
<tr>
<td>VII ‘After-care’ (50% CH₄)</td>
<td>68</td>
<td>50% CH₄, 50% CO₂</td>
<td>4.8</td>
<td>86.8</td>
</tr>
</tbody>
</table>

Graphical Representation

- **Axis:** Avg. Daily CH₄ Outflux (g m⁻² d⁻¹)
- **Labels:** Soil Control, 2% BC, 20-40 cm, 10% BC, 20-40 cm, 10% BC, 0-60 cm
Batch Tests: Maximum and Overall Average Oxidation Rates

<table>
<thead>
<tr>
<th>Material</th>
<th>Column</th>
<th>Depth at Max (cm)</th>
<th>MC at Max Rate (% wet wt.)</th>
<th>%WHC (wet wt.)</th>
<th>Max. Ox. Rate (µg/day/g-soil)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil</td>
<td>C1</td>
<td>30</td>
<td>8.4</td>
<td>48.0</td>
<td>179.6</td>
</tr>
<tr>
<td>2%BC/98% Soil</td>
<td>C2</td>
<td>30</td>
<td>8.1</td>
<td>44.8</td>
<td>221.9</td>
</tr>
<tr>
<td>10%BC/90% Soil</td>
<td>C4</td>
<td>30</td>
<td>10.2</td>
<td>52.3</td>
<td>270.2</td>
</tr>
</tbody>
</table>

- Across all depths/trials, 10% biochar-amended column (C4) had higher CH₄ oxidation rates.
- Lowest rates observed in soil control.
- Highest oxidation rates observed at moisture contents of ~50% WHC.
Microbial Community Characterization

- Relatively low abundance of methylotrophic & methanotrophic bacteria in columns

- Possible that low abundance is due to low activity & biomass following exhumation
Field Testing

P1/P5	Soil control
P2/P6	2% biochar-amended soil at 6-12” depth
P3/P7	Thin (1”) biochar layer at 6” depth
P4/P8	10% biochar-amended soil at 6-12” depth
Test Pad Installation

Scraping off ~1 ft of existing cover

Excavation to ~4-5 ft

Backfill ~1 ft cover soil onto re-graded waste
Test Pad Installation

Re-grade existing int. cover manually

~1" thin biochar layer at 6" depth

~1ft gravel for GDL
Test Pad Installation

Soil sampling of bulk cover materials

Compaction
Overall highest CH$_4$ emissions observed at P7, which was located furthest away from the nearest gas extraction well (~70.5 ft)
CH$_4$ Oxidation Rates in Batch Assays

- Highest oxidation rates observed in soil control
- High rates also observed in P5, P6, P7 and P8
- Strong positive correlation between oxidation rate and avg. CH$_4$ concentration at 90 cm depth ($R^2 = 0.986$)
Type I and Type II MOB in Field Samples

- Predominance of Type I MOB over Type II
 - Major Type I genera: *Methylomonas, Crenothrix*
 - Major Type II genera: *Methylosinus*
Environmental Sustainability

Life Cycle Assessment (LCA) using SimaPro Tool
Eco-Indicator 99(E) V2.08 method
Overall Conclusions

- Feedstock and production conditions can significantly impact key physical and chemical properties of biochar. More stable carbon ensures durability.

- Biochar amendment increases: (a) organic content, (b) water-holding capacity, (c) void ratio, and (d) permeability, that favor conditions suitable for increased methanotrophs and methane oxidization.

- Significant variability in the abundance and activity of methane-oxidizing bacteria in the cover soils
 - Dominant methanotrophs in field include Type I methanotrophic taxa related to *Methylomonas, Crenothrix*.

- Exposure conditions and incubation time impact the development of methane-oxidizing bacterial communities.

- Biochar-amended soil covers are *bioengineered* to be effective and durable. *Sustainable???*
Publications

Contact Information

E-mail: kreddy@uic.edu
Web: http://geotech.lab.uic.edu

Several published papers on this topic can be found on this website.